Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

نویسندگان

  • Kuniharu Nojima
  • Helfrid Hochegger
  • Alihossein Saberi
  • Toru Fukushima
  • Koji Kikuchi
  • Michio Yoshimura
  • Brian J Orelli
  • Douglas K Bishop
  • Seiki Hirano
  • Mioko Ohzeki
  • Masamichi Ishiai
  • Kazuhiko Yamamoto
  • Minoru Takata
  • Hiroshi Arakawa
  • Jean-Marie Buerstedde
  • Mitsuyoshi Yamazoe
  • Takuo Kawamoto
  • Kasumi Araki
  • Jun A Takahashi
  • Nobuo Hashimoto
  • Shunichi Takeda
  • Eiichiro Sonoda
چکیده

Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance

Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...

متن کامل

Cross-resistance to Vincristin and Etoposide in a sub line of the human breast cancer T47D cells selected for Adriamycin-resistance

Breast cancer is one of the most common malignancies among women. Although chemotherapy remains a major therapeutic approach to treat cancers, drug therapy often fails for several reasons, particularly the drug resistance. Resistance to multiple chemotherapeutic agents is one of the most important problems in the treatment of different types of cancers. Therefore, in this study a resistant sub ...

متن کامل

Gene-specific DNA repair of interstrand cross-links induced by chemotherapeutic agents can be preferential.

The gene-specific formation and repair of interstrand cross-links (ICL) were measured in the dihydrofolate reductase (DHFR) gene in hamster cells. Cells were treated with two different chemotherapeutic agents, nitrogen mustard and cisplatin, and the frequency of cross-links was quantified in the active gene and in a downstream, inactive region. About 5% of total lesions induced by these agents ...

متن کامل

Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard...

متن کامل

DNA damage-processing pathways involved in the eukaryotic cellular response to anticancer DNA cross-linking drugs.

We used a panel of isogenic Saccharomyces cerevisiae strains compromised in several different DNA damage-processing pathways to assess in vivo processing of DNA adducts induced by four cross-linking anticancer drugs. By examining cytotoxicity profiles, cell cycle arrest patterns, and determining recombination and mutation frequencies, we found that cisplatin-, nitrogen mustard-, mitomycin-, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 24  شماره 

صفحات  -

تاریخ انتشار 2005